ARCHI – Architecture des ordinateurs

Sylvain Brandel 2025 – 2026 sylvain.brandel@univ-lyon1.fr

Partie 3

CODAGE DES DONNÉES EN MACHINE

Codage des entiers Codage des nombres rationnels

Information

- (Transistors : plus tard)
- Détection de deux états
 - Haut ≥ réf. haute
 - Bas ≤ réf. basse
- Physique : différence de 1V (ordre de grandeur)
- Convention
 - L'un:0
 - L'autre: 1
- Représentation binaire
 - bit
 - Par mots de 4 bits : représentation hexadécimale
 - Mot de 8 bits : octet (Byte)
 - → Mb : Mega bit MB : Mega Byte

Codage des entiers naturels Notation positionnelle

- $\beta \in \mathbb{N}, \beta > 1$: base
- Représentation positionnelle en base β de n ∈ N :

$$(x_{p-1}x_{p-2} \dots x_1x_0)_{\beta} \coloneqq \sum_{i=0}^{p-1} x_i\beta^i$$

- $x_i \in \{0, 1, ..., \beta 1\}$: chiffres de l'écriture de n en base β
 - $-\beta = 2$: chiffres 0 et 1
 - $-\beta = 10$: chiffres de 0 à 9
 - $-\beta = 16$: chiffres de 0 à F
- p : nombre de chiffres nécessaires pour écrire n
- Ex: $(5134)_{10} = 5.10^3 + 1.10^2 + 3.10^1 + 4.10^0$

Codage des entiers naturels Changement de base

- Avec notation positionnelle
- $\beta \in \mathbb{N}$, $\beta > 1$: base de départ, $\gamma \in \mathbb{N}$, $\gamma > 1$: base d'arrivée
- Toujours possible :
 - Conversion x_i et β vers écriture en base γ
 - Calcul de $\sum_{i=0}^{p-1} x_i \beta^i$ avec opérations en base γ
- Ecriture de n en base γ : calcul dans la base d'arrivée γ
- Ex : Conversion binaire vers décimal de n = (10100)₂ :
 - Ajout des puissances de 2 correspondant aux bits non nuls

Chiffre	1	0	1	0	0
Position	4	3	2	1	0
Poids	24	0	2 ²	0	0

- Donc $(10100)_2 = 2^4 + 2^2 = 20$
- Ex : Conversion décimal vers binaire de n = (95)₁₀ et (423)₁₀

Codage des entiers naturels Changement de base

- Avec divisions euclidiennes successives
- Reste de la division euclidienne de n par β :
 - Chiffre de poids faible dans l'écriture de n en base β

$$n = x_{p-1}\beta^{p-1} + x_{p-2}\beta^{p-2} + \dots + x_2\beta^2 + x_1\beta^1 + x_0$$

$$= (x_{p-1}\beta^{p-2} + x_{p-2}\beta^{p-3} + \dots + x_2\beta^1 + x_1)\beta + x_0$$

$$= (x_{p-1}\beta^{p-2} + x_{p-2}\beta^{p-3} + \dots + x_2\beta^1 + x_1)\beta + x_0$$

$$= (x_{p-1}\beta^{p-2} + x_{p-2}\beta^{p-3} + \dots + x_2\beta^1 + x_1)\beta + x_0$$

$$= (x_{p-1}\beta^{p-2} + x_{p-2}\beta^{p-3} + \dots + x_2\beta^1 + x_1)\beta + x_0$$

$$= (x_{p-1}\beta^{p-2} + x_{p-2}\beta^{p-3} + \dots + x_2\beta^1 + x_1)\beta + x_0$$

$$= (x_{p-1}\beta^{p-2} + x_{p-2}\beta^{p-3} + \dots + x_2\beta^1 + x_1)\beta + x_0$$

$$= (x_{p-1}\beta^{p-2} + x_{p-2}\beta^{p-3} + \dots + x_2\beta^1 + x_1)\beta + x_0$$

$$= (x_{p-1}\beta^{p-2} + x_{p-2}\beta^{p-3} + \dots + x_2\beta^1 + x_1)\beta + x_0$$

$$= (x_{p-1}\beta^{p-2} + x_{p-2}\beta^{p-3} + \dots + x_2\beta^1 + x_1)\beta + x_0$$

$$= (x_{p-1}\beta^{p-2} + x_{p-2}\beta^{p-3} + \dots + x_2\beta^1 + x_1)\beta + x_0$$

$$= (x_{p-1}\beta^{p-2} + x_{p-2}\beta^{p-3} + \dots + x_2\beta^1 + x_1)\beta + x_0$$

$$= (x_{p-1}\beta^{p-2} + x_{p-2}\beta^{p-3} + \dots + x_2\beta^1 + x_1)\beta + x_0$$

$$= (x_{p-1}\beta^{p-2} + x_{p-2}\beta^{p-3} + \dots + x_2\beta^1 + x_1)\beta + x_0$$

$$= (x_{p-1}\beta^{p-2} + x_{p-2}\beta^{p-3} + \dots + x_2\beta^1 + x_1)\beta + x_0$$

$$= (x_{p-1}\beta^{p-2} + x_{p-2}\beta^{p-3} + \dots + x_2\beta^1 + x_1)\beta + x_0$$

$$= (x_{p-1}\beta^{p-2} + x_{p-2}\beta^{p-3} + \dots + x_2\beta^2 + x_1\beta^1 + x_0)$$

- En d'autres termes, n mod $\beta = x_0$
 - Les chiffres de n sont obtenus par divisions euclidiennes successives
 - Arrêt au premier quotient nul. Chiffres de poids faible d'abord!
- Ex : Conversion décimal vers binaire de (95)₁₀ et (423)₁₀
- Ex: Conversion décimal vers octal de (3452)₁₀

Codage des entiers naturels Changement de base

- Entre bases 2, 8, 16 : conversions directes
- $8 = 2^3$ \rightarrow chiffre octal : entier sur trois bits

•
$$(x_8x_7x_6x_5x_4x_3x_2x_1x_0)_2 = (x_8x_7x_6)_28^2 + (x_5x_4x_3)_28^1 + (x_2x_1x_0)_28^0 = (y_2y_1y_0)_8$$

 y_2 y_1 y_0

- Ex: Conversion octal vers binaire de (34521)₈
- Ex: Conversion hexadécimal vers binaire de (9A6E)₁₆

Entiers naturels Représentation machine

- Nombre de bits p fixé pour chaque format de codage (8, 16, 32, 64)
- Si résultat sur plus de p bits :
 - Obtenu : p bits de poids faible du résultat exact
 - Drapeau de dépassement de capacité de l'UAL
- Les calculs continuent!
- m codé sur q ≥ p bits

$$m = \sum_{i=0}^{q-1} m_i 2^i = \left(\sum_{i=p}^{q-1} m_i\right) 2^p + \sum_{i=0}^{p-1} m_i 2^i$$
quotient de m par 2^p reste

- Opération arithmétique sur entiers naturels
 - Résultat m placé sur p bits
 - Du coup résultat obtenu : m mod 2^p

Codage des entiers relatifs

- Mots de n bits \rightarrow différents états w = $b_{n-1} \dots b_2 b_1 b_0$
- Non signés :
 - Notation positionnelle : $[w] = \sum_{i=0}^{n-1} b_i 2^i$
- Signés:
 - Signe + valeur absolue : $[w] = (-1)b^{n-1} \sum_{i=0}^{n-2} b_i 2^i$
 - Complément à 1 : $[\![v]\!] = -[\![w]\!] = \overline{b_{n-1}} \ \dots \ \overline{b_2} \ \overline{b_1} \ \overline{b_0}$
 - Complément à 2 : $[w] = -b_{n-1}2^{n-1} + \sum_{i=0}^{n-2} b_i 2^i$
 - Biais N: $[w] = \sum_{i=0}^{n-1} b_i 2^i N$

Codage des entiers relatifs Complément à 2

- n entier relatif, $-2^{p-1} \le n \le 2^{p-1} 1$, à coder sur p bits
- Notation en complément à 2 sur p bits

$$n = (c_{p-1}c_{p-2} \dots c_1c_0)_{\overline{2}}$$

$$(c_{p-1}c_{p-2} \dots c_1c_0)_{\overline{2}} \coloneqq -c_{p-1}2^{p-1} + \sum_{i=0}^{p-2} c_i 2^i$$

- Propriétés :
 - $\quad n \ge 0 \quad \text{ssi } c_{p-1} = 0$
 - $n \le 0$ ssi $c_{p-1} = 1$

Codage des entiers relatifs Complément à 2

- Interprétation
 - Considérer le bit le plus à gauche de poids négatif (-2^{p-1})
- Ex: p = 8, valeur décimale codée par $(10000011)_{\overline{2}}$

$$(10000011)_{\overline{2}} = -128 + 3 = (-125)_{10}$$

• Ex: p = 8, coder $(-120)_{10}$ en complément à 2

$$(-120)_{10} = -128 + 8 = (10001000)_{\overline{2}}$$

Entiers relatifs Complément à 2

• $m = (c_m)_{\overline{2}}$ et $n = (c_n)_{\overline{2}}$ en complément à 2 sur p bits

Addition

- Sans dépassement : codage de m + n = codage de $(c_m + c_n)$ mod 2^p en tant qu'entier naturel
- Avec dépassement : résultat faux
- Dépassement
 - m et n de signes opposés : dépassement impossible
 - m et n de même signe : dépassement ssi signe résultat ≠ signe de n

Opposé

– Sans dépassement : codage de –n en complément à 2 sur p bits $(\overline{c_{p-1}}\ ...\ \overline{c_1}\ \overline{c_0})_2 + 1\ mod\ 2^p$

comme entier naturel

• Ex: p = 7, $(36)_{10} = (0100100)_{\overline{2}}$ $(-36)_{10} = (10111100)_{\overline{2}}$

Rationnels

- Nombre de la forme $\frac{p}{q}$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N} \{0\}$
- Format de longueur fixe là où écriture binaire potentiellement infinie
 → Approximation
- Tout x ∈ Q positif décomposé en
 - Partie entière $\lfloor x \rfloor \in \mathbb{N}$ telle que $\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$
 - Partie fractionnaire $\{x\} = x \lfloor x \rfloor$ avec $0 \le \{x\} < 1$
- Notation positionnelle pour l'écriture de $\{x\}$: s'il existe $q \in \mathbb{N}$ tq

$$\{x\} = (0, x_{-1} \dots x_{-q})_{\beta} = \sum_{i=0}^{q} x_{-i} \beta^{-i}$$

- Alors $(x_{p-1} \dots x_1 x_0, x_{-1} \dots x_{-q})_{\beta}$ écriture de x en base β
- Écriture en base β pas forcément finie mais forcément périodique
- Ex : β = 10, écriture de 13/7 en notation partie entière fractionnaire 13/7 = (1.857142)₁₀

Rationnels Changement de base

- 0 ≤ x < 1 écrit en base 10
- Décimal vers binaire

$$x = (0, x_{-1} \dots x_{-q})_2$$

- Or
$$2 \times x = (x_{-1}, x_{-2} \dots x_{-q})_2$$
, donc $x_{-1} = [2 \times x]$

- Multiplications successives par 2
 - → extraction bits écriture binaire de x
- Ex : Convertir $1/10 = (0,1)_{10}$ en écriture binaire

$$(0,1)_{10} = (0,00011)_2$$

Rationnels Changement de base

- $0 \le x < 1$ écrit en base 2
- Binaire vers décimal
- Multiplications successives par $(10)_{10} = (1010)_2$
 - → en calculant en binaire : chiffres décimaux de x
- Fastidieux à la main
- Si pas trop de bits, il suffit d'additionner les poids de ces bits :

$$-2^{-1} = 0.5$$
 $2^{-2} = 0.25$ $2^{-3} = 0.125$ $2^{-4} = 0.0625$

• Ex : Convertir (0,1011)₂ en écriture décimale

$$0.5 + 0.125 + 0.0625 = 0.6875$$

Rationnels Représentation en machine ?

- On n'a pas réellement les rationnels
- Un nombre flottant normalisé x est
 - Soit zéro
 - Soit un rationnel de la forme $x = (-1)^s \times (1, b_1 \dots b_{p-1})_2 \times 2^e$
 - $s \in \{0,1\}$: signe
 - (1, b₁ ... b_{p-1})₂: mantisse fractionnaire
- p bits de précision ($b_0 = 1$)

- $e \in \mathbb{Z}$: exposant tel que $e_{min} \le e \le e_{max}$
- On parle de nombre à virgule flottante, ou nombre flottant, ou flottant
- Le 1, en tête garantit l'unicité de la représentation
- Types float et double en C

Nombres à virgule flottante

- On ne les a pas tous!
- P. ex $(0,1)_{10}$ pas dans l'exemple suivant ...
- Ex: flottants ≥ 0
 avec 3 bits de précision,
 e_{min} = -1, e_{max} = 2
 -1 ≤ e ≤ 2

е	Binaire	Décimal
-	0	0
e = -1	$(1,00)_2 \times 2^{-1}$ $(1,01)_2 \times 2^{-1}$ $(1,10)_2 \times 2^{-1}$ $(1,11)_2 \times 2^{-1}$	0,5 0,625 0,75 0,875
e = 0	$(1,00)_2 \times 2^0$ $(1,01)_2 \times 2^0$ $(1,10)_2 \times 2^0$ $(1,11)_2 \times 2^0$	1 1,25 1,5 1,75
e = 1	$(1,00)_2 \times 2^1$ $(1,01)_2 \times 2^1$ $(1,10)_2 \times 2^1$ $(1,11)_2 \times 2^1$	2 2,5 3 3,5
e = 2	$(1,00)_2 \times 2^2$ $(1,01)_2 \times 2^2$ $(1,10)_2 \times 2^2$ $(1,11)_2 \times 2^2$	4 5 6 7

Nombres à virgule flottante

• Ex: (0,1)₁₀ avec 8 bits de précision

```
• (0,1)_{10} = (0,00011)_2
= (0,00011001100110011)_2
= (1,1001100110011)_2 x 2<sup>-4</sup>
8 bits de précision
```

- On doit tronquer à 7 bits de mantisse Donc $(1,1001100)_2$ x $2^{-4} \le (0,1)_{10} \le (1,1001101)_2$ x 2^{-4}
- Il faut faire un choix → arrondi
 - Le milieu de cet intervalle est (1,10011001)₂ x 2⁻⁴
 - Ici on choisit d'arrondir au plus proche
 - (0,1)₁₀ est supérieur au milieu de l'intervalle, donc

L'approximation
$$(0,1)_{10} \approx (1,1001101)_2 \times 2^{-4}$$

Codage en précision p :

C =	1 bit	k bits	p-1 bits	
	Signe	Code de l'exposant : c _e	Code de la mantisse : c _m	

Pour un flottant normal, la valeur codée est

$$f(c) = (-1)^{s(c)} \times m(c) \times 2^{e(c)}$$

- s(c) : signe du flottant
- $m(c) = (1,c_m)_2$ (le 1, est implicite)
- $e(c) = (c_e)_2 (2^{k-1} 1)$

Codage en précision p :

c =	1 bit	k bits	p-1 bits
	Signe	Code de l'exposant : c _e	Code de la mantisse : c _m

- $(c_e)_2 = 0$ et $(c_m)_2 = 0$: nombre représenté est zéro (2 codages)
- $(c_e)_2 = 2^k 1$: valeur exceptionnelle (+Inf, -Inf, NaN)
- $1 \le (c_e)_2 \le 2^k 2$: nombre représenté normal, alors

$$m(c) = (1,c_m)_2$$
 et $e(c) = (c_e)_2 - (2^{k-1} - 1)$
biais

Simple précision

 codé sur 32 bits 	_	codé	sur	32	bits
--------------------------------------	---	------	-----	----	------

_	type	float	en	C)
---	------	-------	----	----

31	30 23	22 0
Signe	C _e	C _m

- Précision p = 24 bits, k = 8, biais = 127, e_{min} = -126, e_{max} = 127
- $[w] = (-1)^{b_{31}} \times (1, b_{22} \dots b_1 b_0)_2 \times 2^{(\sum_{i=23}^{30} b_i 2^{(i-23)-127})}$
- Valeurs représentables $[\pm 2^{-126}, (2-2^{-23}) \times 2^{127}]$

Double précision

- codé sur 64 bits
- type double en C

63	62 52	51 0
Signe	C _e	C _m

- Précision p = 53 bits, k = 11, biais = 1023, e_{min} = -1022, e_{max} = 1023
- $[w] = (-1)^{b_{63}} \times (1, b_{51} \dots b_1 b_0)_2 \times 2^{(\sum_{i=52}^{62} b_i 2^{(i-52)-1023})}$
- Valeurs représentables $[\pm 2^{-1022}, (2-2^{-52}) \times 2^{1023}]$

- Rationnel ou réel : représentation arrondie en général
- 4 modes d'arrondis
 - Arrondi au plus proche : RN(c)
 - Si c équidistant de deux flottants consécutifs, on prend celui dont la mantisse termine par 0
 - Arrondi vers $-\infty$ (RD), $+\infty$ (RU), 0 (RZ)
- La norme impose l'arrondi correct pour +, −, ×, ÷, √ :
 - Résultat calculé = résultat exact arrondi selon le mode d'arrondi courant
 - Mode d'arrondi par défaut : arrondi au plus proche en général

Les float NE SONT PAS les réels