TD2 – Alphabets, langages, représentation finie

- 1. Soit Σ un alphabet tel que $|\Sigma|=n$. Combien existe-t-il de mots de longueur $k\geq 0$? Combien existe-t-il de mots de longueur au plus $k\geq 0$?
- 2. Montrez que pour tout langage L, $L^* = (L^*)^*$.
- 3. Montrez qu'il existe des langages L₁ et L₂ tels que
 - $(L_1 \cup L_2)^* \neq L_1^* \cup L_2^*$
 - $(L_1 . L_2)^* \neq L_1^* . L_2^*$
- 4. (facultatif) Donnez un algorithme pour énumérer tous les mots de longueur au plus k sur un alphabet à n symboles.

Les **expressions rationnelles** sur un alphabet Σ sont tous les mots construits sur l'alphabet $\Sigma \cup \{(,),\emptyset,\cup,*\}$:

- (1) \emptyset et chaque élément de Σ est une expression rationnelle,
- (2) Si α et β sont des expressions rationnelles, alors $(\alpha\beta)$ et $(\alpha \cup \beta)$ est aussi une expression rationnelle,
- (3) Si α est une expression rationnelle, alors α^* est aussi une expression rationnelle,
- (4) Rien d'autre n'est une expression rationnelle hormis les points (1) à (3).

On dit que deux expressions rationnelles sont équivalentes si elles définissent le même langage.

Soient u et v deux expressions rationnelles. Les égalités suivantes peuvent être démontrées :

7.
$$u^*u^* = u^*$$

13.
$$(\mathbf{u} \cup \mathbf{v})^* = \mathbf{u}^*(\mathbf{u} \cup \mathbf{v})^*$$

2.
$$\emptyset$$
u = u \emptyset = u

8.
$$(u^*)^* = u^*$$

14.
$$(u \cup v)^* = (u \cup vu^*)^*$$

3.
$$uu^* = u^*u$$

9.
$$u(v \cup w) = uv \cup uw$$

15.
$$(u \cup v)^* = (u^*v^*)^*$$

4.
$$uu^* \cup \emptyset = u^*$$

10.
$$(u \cup v)w = uw \cup vw$$

16.
$$(u \cup v)^* = u^*(vu^*)^*$$

5.
$$\mathbf{u} \cup \mathbf{v} = \mathbf{v} \cup \mathbf{u}$$

11.
$$(uv)*u = u(vu)*$$

17.
$$(u \cup v)^* = (u^*vu^*)^* \cup u^*$$

6.
$$\mathbf{u} \cup \mathbf{u} = \mathbf{u}$$

12.
$$(u \cup v)^* = (u^* \cup v)^*$$

18.
$$(u \cup v)^* = (u^*v)^*u^*$$

- 5. Les affirmations suivantes sont-elles vraies ? Expliquez pourquoi :
 - a) baa \in a*b*a*b*
 - b) $b*a* \cap a*b* = a* \cup b*$
 - c) $a*b* \cap c*d* = \emptyset$
 - d) $abcd \in (a(cd)*b)*$
- 6. Soit $\Sigma = \{a, b\}$. Donnez une expression rationnelle définissant les langages sur Σ décrits par les définitions suivantes :
 - a) le langage de tous les mots contenant au moins 2 a (i.e. 2 occurrences de la lettre a).
 - b) le langage de tous les mots contenant au plus 2 a.
 - c) le langage de tous les mots contenant un nombre de a divisible par 3.
 - d) le langage de tous les mots ne contenant pas le facteur aa.
- 7. Donnez une expression rationnelle définissant le langage $L = \{w \in \{a, b\}^* \mid w \text{ contient aa mais pas abb}\}$ Indication : un mot w du langage peut être décomposée en $w = b^*uv$ où u est une chaîne qui finit par a et ne contient pas abb et v est une chaîne qui commence par a et ne contient pas abb.
- 8. Pour chacun des langages suivants, donnez une expression régulière représentant son complément.
 - a) $(a \cup b)*b$
 - b) $((a \cup b)(a \cup b))^*$
 - c) $b*aa*b(a \cup b)*$
- 9. Montrez les égalités suivantes en utilisant les identités ci-dessus :
 - a) $((a*b*)*(b*a*)*)* = (a \cup b)*$
 - b) $(a*b)* \cup (b*a)* = (a \cup b)*$
 - c) $(a \cup b)*a(a \cup b)* = b*a(a \cup b)*$