M1if09 – Calculabilité & complexité Sylvain Brandel 2021 – 2022

sylvain.brandel@univ-lyon1.fr

COMPLEXITÉ CLASSES P ET NP

Exemple 1 : voyageur de commerce

Visite de *n* villes en faisant le moins de km possibles.

Algorithme?

produire toutes les permutations de villes possibles (sauf la première qui est toujours la même),

pour chaque permutation, calculer le trajet.

 \rightarrow (n-1)! permutations possibles.

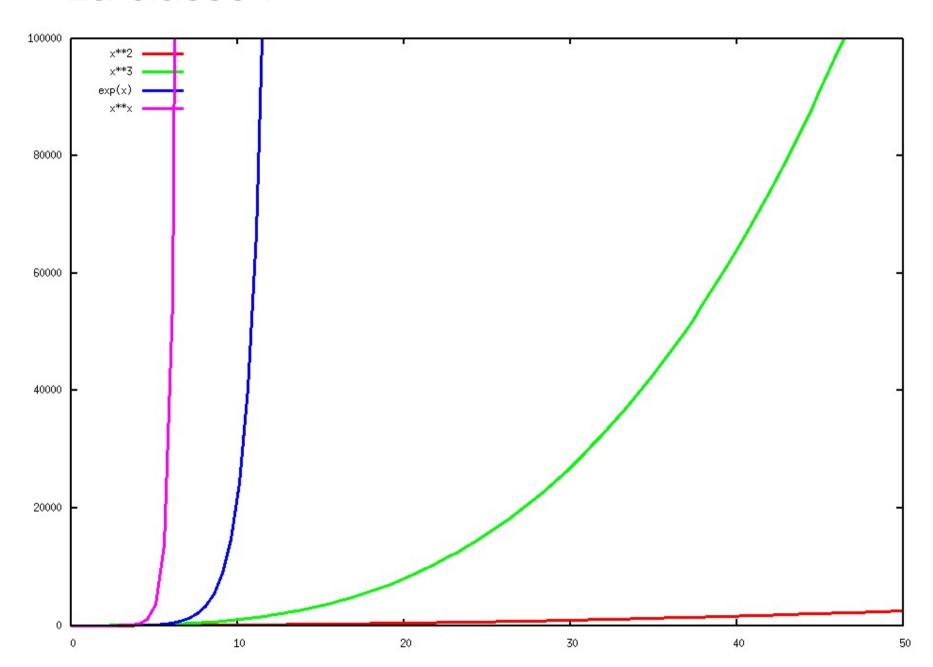
• Ex. 2 : géométrie tortue

```
void triangles1(float x, float y, float d, float h) {
  if (y+d < h) {
    tracer(x-d,y+d);
    triangles1(x-d,y+d,d,h);
    tracer(x+d,y+d);
    triangles1(x+d,y+d,d,h);
    tracer(x,y);
}</pre>
```

appel avec:

```
placer(x,y); triangles1(x,y,d,h);
```





Machine de Turing

- Machine de Turing standard : quintuplet M = $(K, \Sigma, \Gamma, \delta, q_0)$
 - K : ensemble fini d'états
 - ∑ : alphabet d'entrée
 - $-\Gamma$: alphabet des symboles du ruban
 - $-\delta$: fonction de transition

```
fonction partielle K \times \Gamma \longrightarrow K \times \Gamma \times \{\leftarrow, \rightarrow, S\},
```

les symboles ← et → désignent un déplacement élémentaire à gauche ou à droite, S pour Stay

- $-q_0 \in K$ est l'état initial.
- Machine de Turing non déterministe : sextuplet $M = (K, \Sigma, \Gamma, \Delta, q_0, F)$
 - Δ : relation de transition $\Delta \subset K \times \Gamma \times K \times \Gamma \times \{\leftarrow, \rightarrow, S\}$
 - F ⊂ K : états acceptants
 - → Plusieurs sorties différentes pour la même entrée
 - Accepteur dont le seul résultat qui nous intéresse est de savoir si la machine s'arrête ou non

Définition

Une machine de Turing déterministe $M = (K, \Sigma, \Gamma, \delta, q_0, F)$ est dite polynomialement bornée s'il existe un polynôme p tel que pour toute entrée w, il n'y a pas de configuration C telle que

$$(q_0, \# w) \mid_{M}^{p(|w|+1)} C$$

c'est-à-dire M s'arrête toujours, et ce, en au plus p(|w|+1) étapes

Un langage est dit polynomialement décidable ssi il existe une machine de Turing polynomialement bornée qui le décide

La classe des langages polynomialement décidables est notée P

Thèse de Church – Turing

- Un algorithme est une machine de Turing qui s'arrête pour toutes ses entrées
- We therefore propose to adapt the Turing machine that halts on all inputs as the precise formal notion corresponding to the intuitive notion of an "algorithm"
- Les langages reconnus par une procédure effective sont ceux décidés par une machine de Turing
- Every computational process that is intuitively considered to be an algorithm can be converted to a Turing machine

• La thèse de Church-Turing est raffinée en :

Les machines de Turing polynomialement bornées et la classe P correspondent aux notions

- D'algorithmes pratiquement exécutables
- Et de problèmes réellement solvables
- Théorème

La classe P est stable par complément

Théorème

Il existe des langages récursifs non polynomialement décidables

Exemples de problèmes et de complexité

Exemple 1 : existence d'un chemin

```
Soient un graphe orienté G \subset V \times V (V = \{v_1, ..., v_n\}) et deux sommets v_i et v_j \in V Existe-t-il un chemin entre v_i et v_j?
```

⇒ Il existe un algorithme en O(n³) : calcul de la fermeture réflexive – transitive

Exemples de problèmes et de complexité

Exemple 2 : graphes Eulériens

Soit un graphe G.

Existe-t-il un chemin fermé (cycle) dans G qui utilise chaque arête une fois et une seule ?

Un graphe qui contient un tel cycle est dit Eulérien ou unicursal

Le problème du cycle Eulérien ∈ P

Exemples de problèmes et de complexité

• Exemple 3 : graphes Hamiltoniens

Soit un graphe G

Existe-t-il un cycle passant par chaque sommet une fois et une seule ? Un graphe qui contient un tel cycle est dit Hamiltonien

Algorithme:

- Examiner toutes les permutations de nœuds possibles (→ exponentiel)
- Regarder si le parcours correspondant existe dans G

Le problème des cycles Hamiltoniens n'est pas connu comme étant dans P

Définition

Une machine de Turing non déterministe $M = (K, \sum, \Gamma, \Delta, q_0, F)$ est dite polynomialement bornée s'il existe un polynôme p tel que : pour toute entrée w, il n'y a pas de configuration C telle que $(q_0, \underline{\#}w) \mid_{M} p(|w|+1) C$ c'est-à-dire M s'arrête toujours, et ce, en au plus p(|w|+1) étapes.

 NP est la classe des langages décidés par une machine de Turing non déterministe polynomialement bornée

NP pour Non déterministe Polynomial

- Rappel : Logique d'ordre 0 calcul des propositions :
 - Variables booléennes
 - Connecteurs (opérations) : ∧, ∨, ⇒, ⇔ et ¬
 - Un littéral est une expression de la forme p ou ¬p pour une variable propositionnelle p
 - Une clause est une disjonction de variables propositionnelles ou de leur négation :

```
E = x_1 \lor x_2 \lor ... \lor x_n (chaque x_i est un littéral)
```

Forme normale conjonctive

```
F = E_1 \wedge E_2 \wedge ... \wedge E_n (chaque E_i est une clause)
= \bigwedge_{i=1}^n (\bigvee_{j=1}^{P_i} x_{ji}) avec x_{ji} = a_{ji} ou \neg a_{ji} (atomes, littéraux positifs ou négatifs = clauses)
```

- Assignation booléenne ou interprétation :
 - fonction : $X \to (T, \bot)$ X : ensemble des variables T : vrai, \bot : faux
- Satisfiabilité : ∃ (au moins) une interprétation rendant la formule vraie

• Enoncé du problème SAT

Soit une forme normale conjonctive F F est-elle satisfiable ?

Proposition

Le problème SAT est dans NP

- Algorithme brutal pour le problème SAT
 - Faire une table de vérité
 - → exponential en fonction du nombre de variables.
 - Pour chaque assignation, tester la FNC (linéaire)
 - exponentiel
- 2-SAT (au plus 2 littéraux par clause) : (a∨b) ∧ (c∨d) ∧ e ∧ ...
 - 2-SAT ∈ P (algorithme P connu, même si table de vérité de taille exponnentielle)
- 3-SAT (exactement 3 littéraux par clause : (a∨b∨c) ∧ (d∨e∨f) ∧ ...
 - 3-SAT ∈ NP (pas d'algorithme P connu, algorithme NP connu)
- SAT (FNC avec clauses avec nombre quelconque de littéraux)
 - SAT ∈ NP

Voyageur de commerce (faible)

Soient un entier $n \ge 2$, une matrice de distance d_{ij} et un entier $B \ge 0$.

(B est le budget du voyageur de commerce)

Le problème consiste à trouver une permutation π sur $\{1, 2, ..., n\}$ telle que $C(\pi) \le B$, où :

$$C(\pi) = d_{\pi(1) \pi(2)} + d_{\pi(2) \pi(3)} + \dots + d_{\pi(n-1) \pi(n)} + d_{\pi(n) \pi(1)}$$

Proposition

Le problème du voyageur de commerce est dans NP

- De manière semblable, des algorithmes de type :
 - Générer de manière non déterministe une situation
 - Tester de manière déterministe cette situation

Peuvent résoudre des problèmes précédents avec des machines de Turing ND polynomialement bornées

- Si le test de la situation se fait avec une machine de Turing (déterministe) polynomialement bornée
- Et si la taille de la situation est bornée polynomialement en fonction des entrées

- 2-SAT ∈ P, 3-SAT ∈ NP ⇒ SAT ∈ NP ce qui ne veut pas dire que SAT \notin P...
- P ⊆ NP (clair)
- NP ⊆ P ? Cela voudrait dire :
 - Qu'il existe une MT polynomialement bornée équivalente à une MT ND polynomialement bornée
 - Que les problèmes SAT, voyageur de commerce, cycle de Hamilton, etc. seraient dans P
- En fait, on ne sait pas si NP ⊆ P (et donc P = NP).

- Définition (borne exponentielle)
 - Une MT M = (K, Σ , Γ , δ , q₀, F) est dite exponentiellement bornée s'il existe un polynôme p tel que :
 - pour toute entrée w, il <u>n</u>'y a <u>pas</u> de configuration C telle que $(q_0, \underline{\#}w) \mid_M 2^{p(|w|)} + 1$ C

Cette machine s'arrête toujours, et ce en au plus 2^{p(|w|)}+1 étapes

- On note EXP la classe des langages qui peuvent être décidés par une MT exponentiellement bornée
- Théorème

Si $L \in NP$, alors $L \in EXP$

Autrement dit : NP ⊆ EXP

Classe NP Certificat

- MT non dét. polynom. bornée : résolution de problèmes d'existence
 - Production d'une situation
 - Test
 - Réussite → problème d'existence résolu
 - Échec à tous → problème d'existence résolu (réponse négative)
- Certificat (témoin) :
 - Mot synthétisant une solution et passant le test avec succès
 - Tous les problèmes NP ont des certificats
 - Seuls les problèmes NP ont des certificats
 - En pratique
 - Longueur des certificats polynomiale par rapport aux entrées
 - Test des certificats en temps polynomial

Classe NP Certificat

Définition

```
Soient \Sigma un alphabet et ";" un symbole \notin \Sigma
Soit L' un langage tel que L' \subseteq \Sigma^*; \Sigma^*
On dit que L' est polynomialement équilibré s'il existe un polynôme p tel que si x ; y \in L' alors |y| \le p(|x|)
```

Théorème

```
Soit L \subseteq \Sigma^* un langage et \Sigma un alphabet pour lequel; \notin \Sigma et |\Sigma| \ge 2.

L \in NP ssi il existe un langage polynomialement équilibré L' \subseteq \Sigma^*; \Sigma^* tel que :

L' \in P et L = \{x \mid \exists \ y \in \Sigma^* : x \ ; \ y \in L'\}
```

- L' = { x ; y | y est un certificat pour x }
- Si $x \in L$, alors il y a au moins un certificat
 - Si L' existe, alors une MT non dét. décide L en testant tous les certificats, en utilisant une MT dét. décidant L', donc L ∈ NP
 - Si L ∈ NP, alors il existe une MT non dét. polynomialement bornée décidant L

Exemple

- L : SAT ; L' : une interprétation validant chaque instance positive
- L: 3-COL; L': un coloriage pour chaque graphe 3-coloriable
- L : ensemble des nombre composites ; L' : la paire d'entiers composant chaque nombre